MATH 521A: Abstract Algebra

Exam 2 Solutions

1. Determine, with proof, all zero divisors in \mathbb{Z}_{34}. How many are there?

For every integer x satisfying $1 \leq x \leq 16$, we have $[2 x][17]=[34 x]=[0]$. However none of the $[2 x]$ are $[0]$, and neither is $[17]$; hence we have seventeen zero divisors. There are no more, because Theorem 2.10 states that $[x]$ is a unit in \mathbb{Z}_{34} if and only if $\operatorname{gcd}(x, 34)=1$. Hence all other elements are units (and not zero divisors), or [0] itself.
2. Find all solutions to the modular equation $50 x \equiv 20(\bmod 630)$.

We first apply our congruence theorem with $a=10 ; x$ a solution to our congruence if and only if it is a solution to $5 x \equiv 2(\bmod 63)$. We now use the generalized Euclidean algorithm to determine that $(-25) 5+(2) 63=1$, so $[-25][5]=[1]$ in \mathbb{Z}_{63}. Multiplying, we get $x \equiv(-25) 5 x \equiv(-25) 2=-50(\bmod 63)$. Hence the unique solution $\bmod 63$ is $x=-50$, or $x=13$. However the problem is $\bmod 630$, so there are ten solutions: [13], [76], [139], [202], [265], [328], [391], [454], [517], [580].
3. For ring R and element $x \in R$, we say that x is silver if $x+x+x=0_{R}$. Define $T \subseteq R$ to be the set of silver elements of R. Prove that T is a subring of R.
(1) T is nonempty, since $0+0+0=0+0=0$, so $0 \in T$.
(2) Suppose $x, y \in T$. We calculate $(x-y)+(x-y)+(x-y)=(x+x+x)-(y+y+y)=$ $0-0=0$, so $x-y \in T$, so T is closed under subtraction.
(3) Suppose again $x, y \in T$. We calculate $x y+x y+x y=(x+x) y+x y=(x+x+x) y=$ $0 y=0$, so $x y \in T$. Hence T is closed under multiplication.
4. Consider the function $f: \mathbb{Z}_{34} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{17}$ given by $f:[x]_{34} \mapsto\left([x]_{2},[x]_{17}\right)$. Prove that f is well-defined.
Suppose that $[x]_{34}=[y]_{34}$, i.e. we have two names for the same element of the domain. Then $34 \mid(x-y)$, i.e. there is some $k \in \mathbb{Z}$ with $34 k=x-y$. We use this equation twice: First, $x-y=34 k=2(17 k)$, and $17 k \in \mathbb{Z}$, so $2 \mid(x-y)$. This means that $x \equiv y$ $(\bmod 2)$ and so $[x]_{2}=[y]_{2}$. Second, $x-y=17(2 k)$, and $2 k \in \mathbb{Z}$, so $17 \mid(x-y)$. This means that $x \equiv y(\bmod 17)$ and so $[x]_{17}=[y]_{17}$. Hence $\left([x]_{2},[x]_{17}\right)=\left([y]_{2},[y]_{17}\right)$.
5. Let R have ground set \mathbb{Z} and operations given by:

$$
\forall x, y \in \mathbb{Z}, \quad x \oplus y=x+y-2, \quad x \odot y=2 x+2 y-x y-2
$$

Prove that R, with operations \oplus, \odot, is a commutative ring.
We must check all the axioms. (0) Since $x+y-2,2 x+2 y-x y-2 \in \mathbb{Z}, R$ is closed under both operations. (1) $x \oplus y=x+y-2=y+x-2=y \oplus x$, so \oplus is commutative. (2) $(x \oplus y) \oplus z=(x+y-2) \oplus z=x+y-2+z-2=x+y+z-2-2=x+(y \oplus z)-2=x \oplus(y \oplus z)$, so \oplus is associative. (3) We have $0_{R}=2$, as $2 \oplus y=2+y-2=y$, for all $y \in R$. (4) Let $y \in R$. Note that $y \oplus(4-y)=y+(4-y)-2=2=0_{R}$, so $-y=4-y$. (5) We calculate $(x \odot y) \odot z=(2 x+2 y-x y-2) \odot z=4 x+4 y-2 x y-4+2 z-2 x z-2 y z+x y z+2 z+2 z-2=$
$2 x+4 y+4 z-2 y z-4-2 x y-2 y z+x y z+2 x-2=x \odot(2 y+2 z-y z-2)=x \odot(y \odot z)$. (commutative) We have $x \odot y=2 x+2 y-x y-2=2 y+2 x-y x-2=y \odot x$. This lets us just prove one of the two distributive axioms: (6) $x \odot(y \oplus z)=x \odot(y+z-2)=$ $2 x+2 y+2 z-4-x y-x z+2 x-2=2 x+2 y-x y-2+2 x+2 z-x z-2-2=$ $(2 x+2 y-x y-2) \oplus(2 x+2 z-x z-2)=(x \odot y) \oplus(x \odot z)$.
6. Let R be a (not necessarily commutative) ring with identity and $x, y \in R$. Suppose that neither x nor y is a zero divisor, and that $x y$ is a unit. Prove that x is a unit.
Since $x y$ is a unit, there is some $u \in R$ with $u x y=x y u=1$. We have $x(y u)=1$, so $y u$ is a right inverse to x. We multiply $u x y=1$ on the left by y to get $y u x y=y 1=y=1 y$. Since y is not a zero divisor, we may cancel it on the right (by a theorem proved in class), to get $y u x=1$ or $(y u) x=1$. Hence $y u$ is also a left inverse to x.
7. Let R be the ring of 2×2 upper triangular matrices with entries from \mathbb{Q}, i.e. $R=$ $\left\{\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right): a, b, c \in \mathbb{Q}\right\}$. Determine, with proof, all units and zero divisors of R.
Claim 1: If $a c \neq 0$ then the matrix is a unit. We have $\left(\begin{array}{cc}a & b \\ 0 & c\end{array}\right)\left(\begin{array}{cc}1 / a & -b / a c \\ 0 & 1 / c\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=1_{R}$.
Claim 2: If $a c=0$ then the matrix is a zero divisor. We have $\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)\left(\begin{array}{cc}c & -b \\ 0 & a\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)=0_{R}$.
No element can be both a unit and a zero divisor (by a homework problem). Since the two claims above cover all cases, no element can be neither.
8. Let R be the ring of 2×2 matrices with entries from \mathbb{Q}. Define $f: R \rightarrow R$ via $f:\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$, a.k.a. the matrix transpose. Prove or disprove that f is a ring isomorphism.
We calculate $f\left(\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)\left(\begin{array}{cc}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right)\right)=f\left(\left(\begin{array}{c}a a^{\prime}+b c^{\prime} \\ c a^{\prime}+d c^{\prime} \\ \\ \\ b^{\prime}+b b^{\prime}+d d^{\prime}\end{array}\right)\right)=\left(\begin{array}{c}a a^{\prime}+b c^{\prime} c a^{\prime}+d c^{\prime} \\ a b^{\prime}+b d^{\prime} \\ c b^{\prime}+d d^{\prime}\end{array}\right)$.
However $f\left(\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)\right) f\left(\left(\begin{array}{cc}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right)\right)=\left(\begin{array}{ccc}a & c \\ b & d\end{array}\right)\left(\begin{array}{c}a^{\prime} \\ b^{\prime} \\ b^{\prime} \\ d^{\prime}\end{array}\right)=\left(\begin{array}{c}a a^{\prime}+c b^{\prime} \\ b a^{\prime}+d b^{\prime} \\ b c^{\prime}+c d^{\prime} \\ \end{array}\right.$ is not a ring homomorphism (and hence not a ring isomorphism). As it happens, f satisfies all other ring isomorphism properties.

